
Computing
Low-Weight DLs

RYAN HENRY

1

H((gB)A)=

gA

=H((gA)B)

A B

2

Given (g，x), find gx

2

The discrete
exponentiation

problem is “easy”
(in the sense that there are PPT ALGORITHMS that solve ARBITRARY discrete

exponentiation instances)

3

Just how “easy” is it?

x = 1 0 0 1 0 1 1 0 1

((((((((g1)2g0)2g0)2g1)2g0)2g1)2g1)2g0)2g1

If |g|=q , then cost ~lg q squares and ~(lg q)/2 multiplies
(on average)

1 0 0 1 0 1 1 0 1

4

Given (g，gx), find x
an integer (from ℥q)

4

The DL problem
is “hard”

∃ infinite families of groups w.r.t which

(in the sense that no PPT Algorithm can solve UNIFORM RANDOM DL
instances in the groups comprising the family)

5

Just how “hard” is it?
“Baby-step”

g，g2，g3，…，g⎾ q ⏋−1

g⎾ q ⏋，g2⎾ q ⏋，…，g⎾ q ⏋2
“Giant-step”

gx/ga ≟ gb⎾ q ⏋

⇒ gx = ga+b⎾ q ⏋

5

Just how “hard” is it?
“Baby-step”

g，g2，g3，…，g⎾ q ⏋−1

g⎾ q ⏋，g2⎾ q ⏋，…，g⎾ q ⏋2
“Giant-step”

If |g|=q , then cost ≤2q½ multiplies

6

Cost of ``square-and-multiply’’
grows with number of 1 digits
in the exponent

7

Given (g，gx), find x
Q: How hard is the LHW-DL problem?

7

The LHW-DL problem
is “sorta hard”

8

How hard is “sorta hard”?
“Baby-step”

“Giant-step”

gx/g∑i∈X2 2 i ≟ g∑i∈X1 2 i

⇒ gx = g∑i∈X1∪X2 2 i

∀ X1∈
[lg q]
⎾t/2⏋ , g∑i∈X1 2

i

∀ X2∈
[lg q]
⎿t/2⏌ , gx/g∑i∈X2 2 i

8

How hard is “sorta hard”?
“Baby-step”

“Giant-step”
∀ X1∈

[lg q]
⎾t/2⏋ , g∑i∈X1 2

i

∀ X2∈
[lg q]
⎿t/2⏌ , gx/g∑i∈X2 2 i

If |g|=q , then cost ~2 [lg q]
t/ 2

exps

Optimizations
1. Minimal change ordering

⇒ exps in cost become mults ‼

2. Interleaving baby- and giant-steps
⇒ small asymptotic speedup

3. Iterate over “splitting systems”

⇒ asymptotic speedup 2 ⎾lg q⏋
⎿t/2⏌ →t

⎾lg q⏋/2
⎿t/2⏌

9

Coppersmith’s algorithm

x = 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0

10

No collision? Shift halves by 1 bit (cyclically)

Coppersmith’s algorithm

x = 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0

10

No collision? Shift halves by 1 bit (cyclically)
THM: ∀x, ∃ some shift
that yields a collision!

Coppersmith’s algorithm

x = 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0

10

7 ones, 4 zeros 3 ones, 8 zeros

Coppersmith’s algorithm

x = 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0

10

7 ones, 4 zeros 3 ones, 8 zeros
6 ones, 5 zeros 4 ones, 7 zeros

Coppersmith’s algorithm

x = 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0

10

7 ones, 4 zeros 3 ones, 8 zeros
6 ones, 5 zeros 4 ones, 7 zeros
6 ones, 5 zeros 4 ones, 7 zeros

7 ones, 4 zeros 3 ones, 8 zeros

7 ones, 4 zeros 3 ones, 8 zeros
6 ones, 5 zeros 4 ones, 7 zeros
6 ones, 5 zeros 4 ones, 7 zeros
5 ones, 6 zeros 5 ones, 6 zeros

match found!!

Coppersmith’s algorithm

x = 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0

10

• Two loops:
– “Outer loop” runs over m/2 cyclic shifts

– “Inner loop” iterates over ≤2× ⎾(lg q)/2⏋
⎿t/2⏌

⇒Total cost: ≤m ⎾(lg q)/2⏋
⎿t / 2⏌

Pascal’s Lemma

n
k = n−1

k + n−1
k−1

11

n−1
k

of the n
k values in each iteration were also

computed in the previous iteration!

Pascal’s Lemma

n
k = n−1

k + n−1
k−1

11

Can save a factor ≈ ⎾(lg q)/2⏋
⎿t/2⏌ / ⎾(lg q)/2⏋ - 1

⎿t/2⏌ - 1
≈m/t work

Pascal’s Lemma

n
k = n−1

k + n−1
k−1

11

Total cost: ≤t ⎾(lg q)/2⏋
⎿t/2⏌

+o(1)

12

Given (g，gx), find x
Q: How hard is the Low-Radix-b -Weight DL problem?

12

The LRWb -DL
problem is about
as hard as the
LHW-DL problem

13

Add “innermost loop”
over the (b-1)t/2 possibilities

for the non-zero digits

⇒ pick up an extra (b-1)t/2 factor in cost

- partially offset by shorter radix-b length
and (if we’re lucky) lower radix-b weight

13

If B>b and radix-B density
≤ radix-b density, then
radix-B algorithm is faster

THM:

14

Zero-knowledge Password
Policy Checks and

Verifier-based PAKE
Kiefer and Manulis

ESORICS 2014

Before: “Provably secure”
Now: “Demonstrably insecure”

14

Blind Password
Registration for

Verifier-Based PAKE
Kiefer and Manulis

AsiaPKC 2016

Before: “Provably secure”
Now: “Demonstrably insecure”

14

A Provably-Secure and
Efficient Verifier-Based
Anonymous Password-

Authenticated
Key Exchange Protocol

Yang, Jiang, Xu,
Hou, Zhao, and Choo

TrustCom/BigDataSE/ISPA 2016
Before: “Provably secure”
Now: “Demonstrably insecure”

Where do we go from here?

15

Lattice crypto!
- Low-weight secret keys (vectors)
- low weight linear combinations
- other risky “low-weight” ideas…

That’s all for today, folks!

