

- an integer (from \mathbb{Z}_q^*)

Discrete Exponentiation problem:

Given (q, x), find qx

generator of a finite group (of order q)

ne discrete exponentiation problem is "easy"

(in the sense that there are <u>PPT ALGORITHMS</u> that solve <u>ARBITRARY</u> discrete exponentiation instances)

Just how "easy" is it?

X = 1 0 0 1 0 1 1 0 1 $QX = ((((((((((((((()))^{2}g^{0})^{2}g^{0})^{2}g^{0})^{2}g^{1})^{2}g^{0})^{2}g^{1})^{2}g^{0})^{2}g^{1})^{2}g^{0})^{2}g^{1})^{2}g^{0})^{2}g^{1}$

If |g|=q, then cost ~ |gq| squares and ~ (|gq)/2 multiplies

3

(on average)

Discrete Logarithm (DL) problem:

an integer (from \mathbb{Z}_q^*)

generator of a finite group (of order q)

Given (q, q^x), find x

Discrete Logarithm (DL) assumption: (hand-wavy version) I infinite families of groups w.r.t which The DL problem is "hard"

(in the sense that no PPT Algorithm can solve UNIFORM RANDOM DL instances in the groups comprising the family)

Just how "hard" is it?

"Baby-step" $g, g^2, g^3, ..., g^{\lceil \sqrt{q} \rceil - 1}$

> "Giant-step" $g^{\sqrt{q}}, g^{2\sqrt{q}}, \dots, g^{\sqrt{q}}$

 $g^{\chi}/qa \stackrel{2}{=} qb[\sqrt{q}]$ $\Rightarrow g^{\chi} = q^{\alpha+b}\sqrt{q}$

Just how "hard" is it?

"Baby-step" $g, g^2, g^3, ..., g^{\lceil \sqrt{q} \rceil - 1}$

> "Giant-step" $g\sqrt{q}, g\sqrt{q}, g\sqrt{q}^2$

If |g|=q, then cost $\leq 2q^{\frac{1}{2}}$ multiplies

Cost of "square-and-multiply" grows with number of 1 digits in the exponent

Bright idea (?): Choose exponents having few 1 bits!

6

The LHW-DL problem is "sorta hard"

Relationship Status:

Interested in:

Looking for:

Single In a Relationship Engaged Married

It's Complicated In an Open Relationship Widowed

If |g|=q, then $cost \sim 2\binom{[lgq]}{t/2}$ exps

1

Optimizations

1. Minimal change ordering \Rightarrow exps in cost become mults! 2. Interleaving baby- and giant-steps (large constant plus) - Small asymptotic speedup 3. Iterate over "splitting systems" asymptotic speedup 2

best known

"deterministic' complexity

x = 1100101011101100000010Run giant step over other half

No collision? -

 \rightarrow Shift halves by 1 bit (cyclically)

x = 1100101011101100000010

7 ones, 4 zeros

3 ones, 8 zeros

x = 1100101011101100000010

6 ones, 5 zeros

10

4 ones, 7 zeros

x = 1100101011101100000010

6 or set 5 zer os.

bec. Sold DS

Tomostation

6 CELOS

5 ones, 6 zeros @-

10

3-04-05

3 page 2005

Hones Kerse

5 ones, 6 zeros

x = 1100101011101100000010

- · Two loops:
 - "Outer loop" runs over m/2 cyclic shifts
 - "Inner loop" iterates over $\leq 2 \times \binom{\lceil (\lg q)/2 \rceil}{1 + 12}$

 $\Rightarrow \text{Total cost:} \leq m \left(\begin{bmatrix} (\lg q)/2 \\ \lfloor t/2 \end{bmatrix} \right)$

Pascal's Lemma

 $\binom{n-1}{k}$ of the $\binom{n}{k}$ values in each iteration were also computed in the previous iteration!

Pascal's Lemma

Can save a factor $\approx \left(\frac{\lceil (\lg q)/2 \rceil}{\lfloor t/2 \rfloor} \right) \left(\frac{\lceil (\lg q)/2 \rceil - 1}{\lfloor t/2 \rfloor - 1} \right) \approx m/t$ work

Pascal's Lemma

Total cost: $\leq t \begin{pmatrix} \lceil (\lg q)/2 \rceil \\ \lfloor t/2 \rfloor \end{pmatrix} + o(1)$

- and a *promise* that "x has Radix-b weight t « log_b q" Low-Radix-b-Weight DL (LRWb-DL) problem: Given (g, g^x), Find x

Q: How hard is the Low-Radix-b-Weight DL problem?

The LRNh-DL problem is about as hard as the LHW-DL problem

Add "innermost loop" over the (b-1)^{t/2} possibilities for the non-zero digits

 \Rightarrow pick up an extra (b-1)^{t/2} factor in cost

- partially offset by shorter radix-b length and (if we're lucky) lower radix-b weight

If B>b and radix-B density < radix-b density, then radix-B algorithm is faster

THM: (hand-wavy version)

involute Rooty & Computer Security -ESORICS 2014 41 Springe

Zero-knowledge Password Policy Checks and Verifier-based PAKE Kiefer and Manulis ESORICS 2014

> Before: "Provably secure" Now: "Demonstrably insecure"

Association for Computing Machinery

> ASIA CCS'16 Proceedings of the 11th ACM Asia Conference on Computer and Communications Security

ACM SIGSAC Supported by: NSFC, Baidu, Huawei, and Clover Sec

Blind Password Registration for Verifier-Based PAKE Kiefer and Manulis AsiaPKC 2016

Before: "Provably secure" Now: "Demonstrably insecure"

A Provably-Secure and Efficient Verifier-Based Anonymous Password-Authenticated Key Exchange Protocol Yang, Jiang, Xu, Hou, Zhao, and Choo TrustCom/BigDataSE/ISPA 2016 Before: "Provably secure" Now: "Demonstrably insecure"

Where do we go from here?

Lattice crypto! Low-weight secret keys (vectors) low weight linear combinations other risky "low-weight" ideas...

That's all for today, folks!